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The steady axisymmetric flow of viscous liquid relative to a gas bubble due to
its buoyancy-driven motion in a round tube is computed by solving the nonlinear
Navier–Stokes equations using a Galerkin finite-element method with a boundary-
fitted mesh. When the bubble is relatively small compared with the tube size (e.g. the
volume-equivalent radius of the bubble is less than a quarter of the tube radius R),
the bubble exhibits similar behaviour to one moving in an extended liquid, developing
a spherical-cap shape with increasing Reynolds number (Re) if the capillary number
is not too small. The long-bubble (also known as a Taylor bubble) characteristics can
be observed with bubbles of volume-equivalent radius greater than the tube radius,
especially when the surface tension effect is relatively weak (e.g. for Weber number
We greater than unity). The computed values of Froude number Fr for most cases
agree well with the correlation formulae derived from experimental data for long
bubbles, and even with (short) bubbles of volume-equivalent radius three-quarters
of the tube radius. All of the computed surface profiles of long bubbles exhibit a
prolate-like nose shape, yet various tail shapes can be obtained by adjusting the
parameter values of Re and We. At large Weber number (e.g. We =10), the bubble
tail forms a concave profile with a gas ‘cup’ developed at small Re and a ‘skirt’
at large Re with sharply curved rims. For We � 1, the bubble tail profile appears
rounded without large local curvatures, although a slightly concave tail may develop
at large Re. non-uniform annular film adjacent to the tube wall is commonly observed
when Weber number is small, especially for bubbles of volume <3πR3, suggesting
that the surface tension effect can play a complicated role. Nonetheless the computed
value of Fr is found to be generally independent of the bubble length for bubbles of
volume-equivalent radius greater than the tube radius. If the bubble length reaches
about 2.5 tube radii, the value of its frontal radius becomes basically the same as
that for long bubbles of much larger volume. An examination of the distribution of
the z-component of traction along the bubble surface reveals the basic mechanism
for long bubbles rising at a terminal velocity that is independent of bubble volume.

1. Introduction
A gas bubble moving through liquid in a round tube can exhibit various behaviours

of both theoretical and practical interest. The liquid flow as well as the deformable
bubble shape are expected to be axisymmetric, when the centre of volume of the
bubble remains on the centreline of the tube along which the driving force (such as
buoyancy) is directed. The motion of the bubble relative to the tube wall can either be
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driven by a buoyancy force, as in a vertical tube in an earthbound environment, or be
pushed by a liquid flow due to an externally applied pressure gradient, or both. If the
driving mechanism (such as the buoyancy force) is time-independent, the consequent
bubble motion is expected to be steady, except at relatively large values of Reynolds
number when an unsteady or even turbulent wake develops. For convenience of
rigorous analysis, the present work is restricted to the case of buoyancy-driven bubble
motion with a steady axisymmetric laminar flow field.

For bubbles in large tubes with negligible or weak wall effect, the buoyancy-driven
terminal velocity of bubble motion increases with the bubble volume, as expected
based on a balance of buoyant weight and drag. Smaller bubbles moving at lower
terminal velocities exhibit nearly spherical shape due to the relatively strong surface
tension effect. With increasing the bubble size, the terminal velocity increases and
the bubble shape becomes more oblate. Large bubbles moving in extended liquids
(with container walls far away) have been often found to take an apparently steady
‘spherical cap’ shape with either laminar or turbulent wakes (cf. Davies & Taylor 1950;
Wegener & Parlange 1973; Bhaga & Weber 1981). Owing to the nonlinear nature
of the problem, early theoretical studies were limited to cases of very small bubble
deformations either at high Reynolds number (Moore 1959, 1965) or at low Reynolds
number (Taylor & Acrivos 1964; Brignell 1973). The advent of modern high-speed
computers has facilitated numerical computations of the steady-state flow field and
bubble shape over a range of Reynolds number and Weber number (e.g. Ryskin &
Leal 1984), by solving the Navier–Stokes equations in boundary-fitted orthogonal
coordinates with a finite-difference scheme. But numerical solutions of strictly steady
axisymmetric Navier–Stokes equations for the experimentally observed spherical-cap
bubbles (in extended liquids) at Reynolds number �50 had not been successfully
obtained until the recent finite-element computational work of Feng (2007).

When the tube size becomes small compared to the bubble size, or when the
bubble is large enough to fill the tube, the terminal velocity of the bubble is found
to be practically independent of the bubble volume if the tube diameter and liquid
properties are fixed. A relatively large bubble in a (small) tube is often referred to
as a long bubble or Taylor bubble in the literature. Long bubbles moving in round
tubes typically take a bullet shape with rounded nose (cf. Davies & Taylor 1950;
Wallis 1969; Viana et al. 2003). According to a recent literature review of Viana
et al. (2003), the study of long bubbles in tubes dates back to the work of Gibson
(1913). Later, prediction formulae for the (buoyancy-driven) terminal velocity of a
long bubble in a round tube were derived by many authors such as Dumitrescu (1943),
Davies & Taylor (1950), Brown (1965), White & Beardmore (1962), Zukoski (1966),
Wallis (1969). Based on a large amount of experimental data for the terminal velocity
of buoyancy-driven long-bubble motion in vertical round tubes, Viana et al. (2003)
presented a set of universal correlation formulae covering large ranges of the buoyancy
Reynolds number and Eötvös number. Noteworthy in all those formulae is that the
normalized long-bubble terminal velocity, namely the Froude number, is independent
of the bubble volume (in contrast to the situation of buoyancy-driven bubble motion
in an extended liquid). Thus with a consideration of force balance (of buoyant weight
and drag) for long bubbles in tubes, the drag must be nearly proportional to the
long-bubble volume because the buoyant weight is determined by the bubble volume.

It is remarkable that the terminal velocity for both spherical-cap bubbles rising in
an extended liquid and long bubbles rising in round tubes could be quite accurately
predicted by a potential flow analysis considering only the front part of the bubble
(namely the bubble nose) based on a given (arc-of-a-circle) shape of the local interface
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(see Dumitrescue 1943; Davies & Taylor 1950; Brown 1965; Collins 1965, 1966). A
more recent theory of viscous potential flow by Joseph (2003) extended the previous
inviscid potential flow models to include viscosity and surface tension effects, leading
to predictions of the drag coefficient of spherical-cap bubbles even for Reynolds
number less than 50, in good agreement with the empirical formula of Bhaga & Weber
(1981) and that obtained by numerically solving the full Navier–Stokes equations
(Feng 2007). Funada et al. (2005) also applied the theory of viscous potential flow to
derive formulae relating the terminal velocity of long bubbles rising in round tubes to
Reynolds number, Eötvös number, and aspect ratio of the assumed ellipsoidal shape
for the bubble nose, to successfully describe extensive experimental data. However, the
potential flow theory is valid when the flow is irrotational, which may be a reasonable
approximation for the front part of bubble surface where the boundary layer can
remain thin (when Reynolds number is not small and surface curvature is not large
as discused by Batchelor 1967). But the potential flow theory cannot describe the
separated flow in the wake of the bubble, nor can it be used to accurately model
the flow in the thin annular liquid film along the tube wall for analysis of drainage
associated with the buoyancy-driven motion of long bubbles in tubes. Hence, a more
complete theory is desirable to improve understanding of behaviours of long bubbles
in tubes, which often requires numerical solutions of full Navier–Stokes equations.

The problem of viscous flow around a long buoyancy-driven rising bubble in a
round tube has been computed numerically by several authors. For example, Reinelt
(1987) used a finite-difference method to numerically determine the surface shape and
velocity of an air finger rising in a round tube at zero Reynolds number, extending
the result of Bretherton (1961) to much larger capillary number. Excluding the bubble
tail and wake region, Mao & Dukler (1990, 1991) developed a finite-volume method
to compute the liquid flow ahead of and around the bubble, with the bubble velocity
iteratively adjusted until the bubble nose takes a locally spherical shape. Multiple
numerical solutions were shown to exist and a criterion for determining the physically
observable solution was suggested. To include the separated flow in the bubble wake
for examining periodic slug flow, Clarke & Issa (1997) assumed a prescribed flat
bubble tail (base) shape in their finite-volume computations. The volume-of-fluid
computations of Tomiyama, Sou & Sakaguichi (1996) and Bugg, Mack & Rezkallah
(1998) eliminated assumptions about the bubble shape and terminal velocity; so
they could compute results self-consistently for a number of cases (e.g. Tomiyama
et al. compared with their own experiments at Eötvös number 4.7, 16.9, 37.3 for
Morton number 6.6 × 10−6, 1.5 × 10−4, 1.5 × 10−3, 0.0123, with bubbles about twice
the tube diameter long, whereas Bugg et al. presented cases at Eötvös number 10,
40, 100 for Morton number 10−12, 10−2, 10, with a bubble of a fixed volume 8πR3/3
where R is the tube radius). Using a commercial CFD software FLUENT, Taha & Cui
(2006) extended numerical solutions to transient three-dimensional turbulent flows
around long bubbles, among which they also computed a few cases of laminar flow
around axisymmetric bubbles with parameters matching the experiments of Campos &
Guedes de Carvalho (1988).

In the present work, numerical solutions are computed for cases ranging from
spherical-cap bubbles in relatively large tubes (e.g. bubbles of volume πR3/48) to
long bubbles in relatively small tubes (e.g. bubbles of volume 3πR3) by increasing
the bubble volume relative to a given reference tube size, in a domain enclosing
the entire bubble. A method of Galerkin finite elements with full Newton iterations
is used for simultaneously solving the steady axisymmetric Navier–Stokes equations
together with the elliptic mesh-generation equations for accurately tracking the entire
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bubble surface deformations (cf. Christodoulou & Scriven 1992; de Santos 1991). The
computational code used here is the same as described in Feng (2007). Following
the descripion of mathematical formulation and computational method in § 2, the
results presented in § 3 and § 4 are focused on buoyancy-driven bubble motions in
relatively large and small (vertical) round tubes, respectively. The general findings are
summarized and further discussed in § 5.

2. Mathematical formulation and computational method
For convenience of computation and analysis, the problem of a gas bubble moving

through a liquid of constant density ρ, viscosity μ, and surface tension γ in a round
tube is described in terms of dimensionless parameters and variables with length
measured in units of the tube radius R, velocity v in units of bubble’s terminal
velocity U , and pressure p in units of μU/R. Because the density and viscosity of
gases are typically orders of magnitude less than those of liquids, the hydrodynamic
stresses due to the flow of gas inside the bubble is completely ignored. A reference
frame moving with the bubble is adopted here, with the coordinate origin fixed at the
centre of mass of the bubble. Then, the axisymmetric laminar liquid flow around the
bubble is governed by the steady incompressible Navier–Stokes equation system

1

2
Re v · ∇v = ∇ · T with T ≡ −pI + ∇v + (∇v)T (2.1)

and

∇ · v = 0, (2.2)

where Re denotes the Reynolds number defined as 2ρUR/μ, I the identity tensor,
and superscript ‘T ’ stands for the transpose.

A cylindrical (z, r)-coordinate system is used with the z-axis coinciding with the
axis of symmetry (i.e. the centreline of the tube) and pointing in the same direction as
the far-field flow velocity (relative to the bubble). Thus, at the bubble free surface Sf

conservation of momentum is satisfied by imposing the traction boundary condition†

n · T =
1

Ca

[
dt
ds

+
n
r

dz

ds

]
− pan + St z n on Sf , (2.3)

where Ca ≡ μU/γ is the capillary number, the local unit normal vector n at the free
surface points from the liquid into gas, the local unit tangent vector t points in the
direction of increasing s (from the bubble nose) along the free surface and relates
to n in such a way that n × t = eθ (with the right-handed coordinate system (z, r, θ)
used in the present work). The constant excess pressure inside the bubble pa is solved
as an unknown to satisfy an overall constraint that the volume enclosed by the free
surface Sf does not vary ∫

Sf

r2 dz

ds
ds =

4

3
R3

b, (2.4)

where Rb denotes the volume-equivalent radius of the bubble. The Stokes number
St ≡ ρ g R2/(μU ) represents the buoyancy force and is also solved as an unknown to
satisfy another overall constraint that the ‘centre of mass’ of the bubble remains at

† Here, the signs in front of pa and St are different from those in the corresponding equation
presented by Feng (2007), so that both pa and St consistently take positive values.
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Figure 1. Finite-element mesh of the problem domain for Rb = 0.5 (shown for the case of
Re= 200 and We= 100).

the coordinate origin ∫
Sf

z r2 dz

ds
ds = 0. (2.5)

The gravitational (body) force term does not explicitly appear in (2.1) because the hy-
drostatic pressure in the bulk liquid has been lumped in the generalized pressure
p (also called piezometric pressure). Hence, the hydrostatic pressure effect due to
buoyancy force only appears in the boundary condition (2.3) through St.

Moreover, the flow velocity field must satisfy

n · v = 0 on Sf and r = 0, (2.6)

at the free surface Sf , due to the kinematic condition, and at the axis of symmetry
(r =0), as required by the symmetry condition. In addition, the stress-free symmetric
condition at the axis of symmetry (r = 0) can be expressed as

ezer : T= 0 at r = 0, (2.7)

where ez and er denote the unit vectors in the z- and r-directions, respectively.
At the tube wall (r =1) and the upstream (or ‘inlet’) boundary (e.g. located at z = −5

in figure 1), the Dirichlet type of condition for uniform flow velocity is imposed, i.e.

v = ez on r = 1 and Sinlet. (2.8)

At the downstream (or ‘outflow’) boundary (e.g. located at z =10 in figure 1), the
fully developed flow condition for hydrodynamic stresses is used, i.e.

ezer : T =
∂vz

∂r
and ezez : T = 0 on Soutlet. (2.9)

As described by Feng (2007), solutions of this problem can be computed by
discretizing the partial differential equation system (2.1)–(2.9) with the Galerkin
method of weighted residuals using finite-element basis functions (cf. Strang &
Fix 1973; Kistler & Scriven 1984). The distribution of finite-element mesh points
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around the deformable bubble surface is determined by a pair of elliptic partial
differential equations that are also discretized by the Galerkin finite-element method
(cf. Christodoulou & Scriven 1992; de Santos 1991). Then, the set of nonlinear
algebraic equations of the Galerkin weighted residuals is simultaneously solved by
Newton’s method of iterations (Ortega & Rheinboldt 1970). At each Newton iteration,
the Jacobian matrix of sensitivities of residuals to unknowns is evaluated with the
values of unknowns determined in the previous iteration. The resulting linear algebra
system is then solved by direct factorization of the Jacobian matrix with a modified
version of Hood’s frontal solver (Hood 1976). The iteration is continued until the L2

norm of the residual vector becomes less than 10−8.
With the present mathematical formulation, the Reynolds number Re and capillary

number Ca are the two independent parameters that can be conveniently specified,
with St determined as part of the solution. Once Re, Ca, and St are given, other
relevant dimensionless parameters associated with a solution can all be calculated
in terms of them. For example, the Weber number We, Eötvös number Eo, Froude
number Fr, and buoyancy Reynolds number ReG (which is also called dimensionless
inverse viscosity by Fabre & Liné 1992) can be evaluated according to

We ≡ 2ρ U 2 R/γ = ReCa,

Eo ≡ 4 ρ g R2/γ = 4St Ca,

Fr ≡ U/
√

2gR = (1/2)
√

Re/St ,

ReG ≡ 2
√

2gρ2R3/μ = 2
√

ReSt .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.10)

Because of the non-dimensional form of governing equations adopted in the present
work, each solution corresponding to a set of specified Re and Ca can represent
numerous seemingly different fluid systems and bubble sizes by virtue of dynamical
similarity (as discussed by Batchelor 1967).

3. Bubbles rising in relatively large tubes (Rb < 1)

When the bubble radius is smaller than that of tube, the bubble behaviour
strongly depends upon the bubble size as illustrated in a recent numerical study
by Mukundakrishnan et al. (2007) using a front-tracking finite-difference method
coupled with a level contour reconstruction of the front. Hence, cases are presented
in this section according to the value of the bubble volume-equivalent radius Rb.

Shown in figure 1 is a quadrilateral finite-element mesh for a deformed bubble (of
a spherical-cap shape) in a relatively large tube, namely Rb = 0.5 at Re = 200 and
We =100 (for Ca = 0.5). It contains 966 elements and 4047 nodes, with 109 nodes
along the bubble surface.

For the case of relatively strong surface tension, i.e. Ca = 0.01, at Re =0, the bubble
shape is almost spherical. The computed value of St for Rb =0.5 is 38.665, very close
to 38.527 predicted by Haberman & Sayre (1958) for a spherical bubble moving in
a cylindrical tube of radius 2 times of the bubble radius. Thus, the upstream and
downstream boundaries in the present problem domain are shown to be far enough
even at the limit of Stokes flow.

At Re = 100 and Ca = 0.1, figure 2 shows the changes in flow structure and bubble
shape as bubble radius Rb increases from 0.25 to 0.50, 0.75, and 0.90. For convenience
of comparison and future reference, the contour values for streamfunctions shown in
figures of the present work are typically 0, ±0.001, ±0.002, ±0.005, ±0.01, ±0.02,
±0.05, ±0.1, etc. like those in Ryskin & Leal (1984). When the tube is much
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(a)

(b)

(c)

(d)

Figure 2. Streamlines and bubble shapes for (a) Rb = 0.25, (b) 0.50, (c) 0.75, and (d) 0.90 at
Re= 100 and Ca = 0.1.

larger than the bubble (as in the case of Rb = 0.25), the bubble-size-based Reynolds
number Reb ≡ RbRe equals 25 for Re =100 and the bubble-size-based Weber number
Web ≡ Reb Ca equals 2.5 for Ca = 0.1. The flow field around a slightly oblate bubble
exhibits a similar structure to a case presented by Ryskin & Leal (1984) computed at
Reynolds number 20 and Weber number 6 without flow separation.

As the bubble size is increased to Rb =0.5, the values of Reb and Web become
50 and 5 (corresponding to Re =100 and Ca = 0.1). The bubble develops a nearly
spherical-cap shape. If a bubble is moving in an extended liquid, it is expected to take
an oblate shape with a small toroidal vortex in the wake (cf. Ryskin & Leal 1984;
Feng 2007). The nearly spherical-cap bubble shape formed at Reb = 50 and Web =5
for Rb = 0.5 must be a consequence of the tube wall effect. Similar free-surface shapes
were also observed for a drop of radius 0.5 and the same viscosity as that of the
suspending liquid moving in a tube driven by a buoyancy force at about the same
Reynolds number and capillary number (cf. Bozzi et al. 1997).

For bubbles with Rb � 0.75 (at Re =100 and Ca = 0.1), the classical ‘bullet’ shape
of long bubbles is clearly developed with almost invariant bubble nose shape and
wake structure. The computed values of St for Rb = 0.75 and 0.90 are both 234.86
(corresponding to Fr = 0.3263), whereas St for Rb =0.25 and 0.50 are 135.66 and
240.39 (corresponding to Fr = 0.4293 and 0.3225). It is interesting to note that even
for a bubble of (volume-equivalent) radius half of the tube radius (Rb = 0.5) that is
not shaped quite like a classical bullet as long bubbles, its buoyancy-driven terminal
velocity can be virtually the same as those larger bubbles in the same tube (at
Re = 100 and Ca = 0.1). Because the buoyancy Reynolds number ReG for Rb � 0.5 is
greater than 300, a value of Fr =0.3300 (or 0.3393) is obtained from the universal
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correlation formula of Viana et al. (2003) for long bubbles†

Fr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.009494 Re1.026
G

(1 + 6197/Eo2.561)0.5793
, ReG < 10,

0.34/(1 + 3805/Eo3.06)0.58⎧⎪⎨⎪⎩1+

[
31.08

ReG

(
1+

778.76

Eo1.96

)0.49
]1.45

(
1+ 7.22×1013

Eo9.93

)0.094⎫⎪⎬⎪⎭
0.71

(
1+ 7.22×1013

Eo9.93

)−0.094 , ReG � 10,

0.34

(1 + 3805/Eo3.06)0.58
, ReG > 200 and Eo � 5, or ReG > 300 and Eo � 3.5

(3.1)
when the one for ReG � 10 (or the one for ReG > 200 and Eo > 5) is used based on
ReG = 300 and Eo = 94. Thus, the correlation formula of Viana et al. (2003) appears
to be applicable even for bubbles barely forming the bullet shape in a round tube.

3.1. Bubbles of Rb =0.25

A bubble moving through a liquid in a relatively large tube is expected to behave
similarly to those in an extended liquid, for which Feng (2007) computationally
predicted obtaining spherical-cap bubbles as Reb increases with Ca fixed at about
unity. Figure 3 shows the streamlines and bubble shapes for Re= 8, 40, 160, and 400
(corresponding to Reb = 2, 10, 40, and 100) at Ca = 1 for bubbles of Rb = 0.25.

Bubbles at relatively small Re exhibit little deformation with a flow field with
few interesting features. Even at Re = 40 (Reb = 10), the flow barely separates at the
rear surface of the bubble with a nearly spherical-cap shape, very much like a case
presented by Ryskin & Leal (1984) at Reb =Web = 10. The flow separation would
disappear if the value of Ca were reduced to 0.5 (corresponding to Eo = 272.49).
Futher reducing Ca to 0.33 at Reb = 10 (Web = 3.3) results in Eo = 159.33 and a
bubble of oblate spheroid shape of aspect ratio 0.653, with a flow field similar to
a corresponding case presented by Mukundakrishnan et al. (2007) for Reb =9.8 and
Web = 3.0 (at Eo = 160).

The typical spherical-cap shape with toroidal vortices in the laminar wakes is
indeed formed for bubbles at Re= 160 and 400 (i.e. Reb = 40 and 100), similar to the
cases computed by Feng (2007) for bubbles moving in extended liquids for Reynolds
number Reb > 10 at Ca ∼ 1.

Table 1 shows a list of computed parameters at Ca =1 for Rb = 0.25, suggesting
that the spherical-cap bubble characteristics become almost invariant for Reb > 40,

† Actually, Viana et al. (2003) presented the formula in (3.1) for ReG > 200 and Eo > 5 as for
ReG > 200 (without specifying the range of Eo), and the formula in (3.1) for ReG � 10 as for a
transition region 10 <ReG < 200 (see also Funada et al. 2005). But the numerical values of Fr
computed with the formulae for ReG > 200 and for 10<ReG < 200 show little difference (within
10%) for Eo � 5 and ReG > 200, or Eo � 3.5 and ReG > 300. (The majority of the experimental
data used by Viana et al. (2003) were at Eo � 6, with comments for Eo < 6 like “too much scatter
is present”. Several authors (cf. Gibson 1913; Barr 1926; Bretherton 1961; White & Beardmore
1962) showed that long bubbles would not move at Eo less than ∼3.5.) Therefore, the applicable
parameter ranges presented here (one for ReG < 10 and one for ReG � 10 and another of much
simpler form for ReG > 200 and Eo � 5 or ReG > 300 and Eo � 3.5) for the universal correlation
formula of Viana et al. (2003) seem to be reasonable.



Buoyancy-driven motion of a gas bubble in a round tube 385

Re ReG Fr Eo rmax zmin zmax zwake

8 52.110 0.1535 339.43 0.262 −0.233 0.200 −
40 155.80 0.2567 606.81 0.311 −0.186 0.127 0.225
80 283.79 0.2819 1.007×103 0.351 −0.165 0.117 0.526

160 539.30 0.2967 1.818×103 0.390 −0.151 0.111 0.908
280 913.83 0.3064 2.982×103 0.412 −0.143 0.101 1.273
400 1283.4 0.3117 4.117×103 0.422 −0.139 0.0946 1.512
600 1894.9 0.3166 5.984×103 0.430 −0.136 0.0901 1.759

Table 1. Values of ReG, Fr, Eo, rmax, zmin, zmax, and zwake for 8 � Re � 600 at Ca = 1 for
bubbles of Rb = 0.25.

(a)

(b)

(c)

(d)

Figure 3. Streamlines and bubble shapes for (a) Re= 8, (b) 40, (c) 160, and (d) 400 at
Ca =1 and Rb = 0.25.

though the size of the toroidal vortex in the wake increases with Reb, consistent
with the findings of Feng (2007) for bubbles in extended liquids. As in Feng (2007),
rmax, zmin and zmax denote the maximum r-coordinate, and minimum and maximum
z-coordinate values of the deformable bubble surface, whereas zwake is the z-value at
the axis of symmetry where vz = 0, indicating the end of the toroidal vortex in the
wake.

Compared with the corresponding results of Feng (2007) for bubbles in extended
liquids (at the same values of Reb =Rb Re), the value of zwake/Rb for bubbles of
Rb = 0.25 is clearly smaller indicating shorter wake length due to the tube wall effect,
a phenomenon also discussed by Mukundakrishnan et al. (2007) from a somewhat
different perspective. For example, at Ca = 1 and Reb = 20, 40, and 100 Feng (2007)
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obtained zwake/Rb = 2.242, 4.128, and 7.295, whereas the corresponding values from
table 1 are zwake/Rb = 2.104, 3.632, and 6.048. Noteworthy here is that the wake length
reduction due to the tube wall effect becomes more significant (in percentage) as Reb

increases.
Many experiments have indicated that bubbles rising in an extended liquid with

closed laminar toroidal wakes may only be observed for Reb < 200 (Wegener &
Parlange 1973; Hnat & Buckmaster 1976). For example, the results of Wegener &
Parlange (1973) suggest that instability may set in when Reb > 180, whereas Bhaga
& Weber (1981) found the wake behind bubble becomes open and unsteady for
Reb > 110. Therefore, the cases with Re > 600 for Rb =0.25 (Reb > 150) may not be
realizable in experiments despite the fact that they can still be computed numerically.

3.2. Bubbles of Rb = 0.5

As indicated in figure 2, a bubble of Rb = 0.5 seems to be ready to develop the
basic characteristic behavior of long bubbles. According to many previous authors,
the Froude number Fr becomes almost independent of ReG for long bubbles with
ReG > 200 (cf. Viana et al. 2003). Thus, the terminal velocity of a long bubble in a
tube of a given size is not expected to vary much, especially when ReG is not small.
For most liquids, the values of density ρ and surface tension γ do not vary more
than a factor of 5, whereas viscosity μ can change by orders of magnitude. Hence, the
value of We for long bubbles is primarily determined by the size of tube, whereas the
value of Re (which is typically between ∼1/4 and 1/3 of the value of ReG when the
surface tension effect is relatively weak) for a given tube size reflects mostly the liquid
viscosity effect. Evaluating the long-bubble behavior at a fixed value of We becomes
almost equivalent to carrying out experiments with tubes of the same size.

Figure 4 shows the streamlines and bubble shapes for Re= 20, 100, 200, and 600
at We =50 for bubbles of Rb = 0.5. Because the value of We is quite large, a sharply
curved (almost cusp) surface develops at the bubble rim similar to those in spherical-
cap bubbles computed by Feng (2007). Interestingly at Re= 600 (and We =50), the
bubble rim forms two sharply curved corners.

As in table 1, table 2 shows a list of computed parameters but for We =50 for
Rb = 0.5. Here the values of zwake/Rb from table 2 (for Rb = 0.5) are further reduced
from the corresponding values in table 1 (for Rb = 0.25) at the same Reb. For example,
at Reb = 100 we have zwake/Rb = 4.040 for Rb = 0.5 whereas 6.048 for Rb = 0.25. The
value of Fr seems to become almost constant for Re � 100, corresponding to ReG > 300
and Eo > 400, consistent with 0.34 computed with (3.1).

3.3. Bubbles of Rb =0.75

Figure 5 shows the streamlines and bubble shapes for Re= 20, 100, 200, and 600 at
We =20 for bubbles of Rb = 0.75. Unlike the bubbles in figure 4 for Rb = 0.5 that still
exhibit large-tube (or relatively small-bubble) characteristics such as a spherical-cap
shape at Re ∼ 100, 200, those for Rb = 0.75 in figure 5 start to develop the basic
characteristics of the bullet shape of long bubbles. However, the rim with double
sharp corners at Re = 600 with a pronounced concave bubble tail in figure 5 looks
quite similar to the corresponding one (at Re = 600) in figure 4.

For comparison with tables 1 and 2, table 3 provides a list of computed parameters
at We =20 for Rb = 0.75. For Re> 60 (corresponding to ReG > 185) the terminal
velocity of the bubble approaches a constant value (∼0.34) just as the formula (3.1)
indicated (provided that Eo is not less than 40). Thus, it is not surprising to note that
the computed Froude number Fr is 0.3263 for cases of Re = 100 and We =10 shown
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Re ReG Fr Eo rmax zmin zmax zwake

10 42.494 0.2353 902.86 0.515 −0.488 0.423 0.472
20 71.071 0.2814 631.39 0.554 −0.446 0.381 0.558
60 187.73 0.3196 489.48 0.631 −0.397 0.318 1.025

100 305.32 0.3275 466.11 0.657 −0.385 0.280 1.378
200 598.60 0.3341 447.91 0.680 −0.375 0.241 2.020
600 1767.0 0.3396 433.65 0.694 −0.368 0.267 3.443

Table 2. Values of ReG, Fr, Eo, rmax, zmin, zmax, and zwake for 10 � Re � 600 at We= 50 for
bubbles of Rb = 0.5.

(a)

(b)

(c)

(d)

Figure 4. Streamlines and bubble shapes for (a) Re= 20, (b) 100, (c) 200, and (d) 600 at
We= 50 and Rb = 0.5.

in figure 2 for Rb � 0.75, because the corresponding Eo ∼ 94 > 40. Interestingly, the
values of Froude number in table 3 are very close to the corresponding ones in table 2
despite the apparent difference in bubble shapes shown in figure 4 for Rb = 0.5 and
figure 5 for Rb = 0.75.

4. Long bubbles rising in relatively small tubes (Rb � 1)

For long bubbles in relatively small tubes, it is more meaningful to discuss the
bubble size in terms of bubble volume rather than of bubble radius Rb. A bubble of
Rb = 1 has a volume of 4 π/3. Because the long-bubble behavior is expected to be
somewhat independent of the bubble volume, cases are presented in this section at
We =10, 1.0, 0.1, etc. for different values of bubble volume � 4 π/3.
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Re ReG Fr Eo rmax zmin zmax zwake

10 40.501 0.2469 328.07 0.661 −0.935 0.793 0.812
20 69.571 0.2875 242.01 0.695 −0.875 0.713 0.929
60 186.85 0.3211 193.97 0.750 −0.807 0.625 1.489

100 304.25 0.3287 185.14 0.770 −0.790 0.581 1.853
200 597.12 0.3349 178.27 0.794 −0.774 0.556 2.405
600 1764.5 0.3400 173.01 0.818 −0.765 0.607 3.063

Table 3. Values of ReG, Fr, Eo, rmax, zmin, zmax, and zwake for 10 � Re � 600 at We= 20 for
bubbles of Rb = 0.75.

(a)

(b)

(c)

(d)

Figure 5. Streamlines and bubble shapes for (a) Re= 20, (b) 100, (c) 200, and (d) 600 at
We= 20 and Rb = 0.75.

4.1. Long bubbles at We =10

Figures 6, 7, and 8 show the streamlines and bubble shapes for volume 4 π/3, 2 π,
and 3 π at Re= 10, 100, and 300, respectively. As many experiments have shown,
bubbles of different volume (in the same liquid and tube) exhibit basically the
same nose and tail profiles with similar wake structure; the only difference appears
to be the length of the middle part consisting of a nearly uniform annular film
attached to the tube wall. At a fixed value of Weber number We = 10, the bubble
tail deformation becomes more pronounced with increasing Re whereas the bubble
nose maintains almost the same round shape. A concave bubble tail deformation
becomes obvious even at Re= 10, owing to the relatively weak surface tension effect
at We =10. Compared with the bubble in a larger tube (at a given value of Re),
the tube wall effect tends to reduce the size of the toroidal vortex in the wake while
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(a)

(b)

(c)

Figure 6. Streamlines and bubble shapes for bubble volume (a) 4π/3, (b) 2π, and (c) 3π at
Re= 10 and We= 10.

(a)

(b)

(c)

Figure 7. As figure 6 but at Re= 100.

(a)

(b)

(c)

Figure 8. As figure 6 but at Re= 300.

enhancing the bubble tail deformation. At Re =300, variations in bubble tail shape
can be discerned for different bubble volumes (cf. figure 8), with more pronounced
signature deformation for bubbles of larger volumes.
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Volume ReG Fr Eo vz=0 rz=0 vmax rmax zmin zmax

4
3
π 41.004 0.2439 168.13 2.538 0.7026 2.557 0.7045 −1.727 1.501

2π 41.019 0.2438 168.26 2.589 0.7074 2.595 0.7079 −2.399 2.157
3π 41.020 0.2438 168.27 2.599 0.7083 2.600 0.7084 −3.400 3.148

Table 4. Values of ReG, Fr, Eo, vz=0, rz=0, vmax, rmax, zmin, and zmax for bubbles of volume
4π/3, 2π, and 3π at Re= 10 and We= 10.

Volume ReG Fr Eo vz=0 rz=0 vmax rmax zmin zmax zwake
4
3
π 306.49 0.3263 93.939 3.317 0.7865 4.087 0.8126 −1.445 1.111 2.439

2π 306.54 0.3262 93.964 3.732 0.8041 4.285 0.8203 −1.967 1.593 2.938
3π 306.53 0.3262 93.959 4.049 0.8163 4.289 0.8246 −2.726 2.312 3.652

Table 5. As table 4 but at Re= 100 with z wake added.

Volume ReG Fr Eo vz=0 rz=0 vmax rmax zmin zmax zwake

4
3
π 893.27 0.3359 88.658 3.346 0.8063 5.701 0.8505 −1.397 1.137 2.961

2π 893.47 0.3358 88.698 3.927 0.8278 6.088 0.8632 −1.892 1.647 3.462
3π 893.48 0.3358 88.700 4.545 0.8449 6.512 0.8719 −2.599 2.378 4.223

Table 6. As table 5 but as Re= 300.

Although the computations of steady axisymmetric solutions can often be extended
to Re � 300 with highly deformed bubble tails, some experiments indicated that
axisymmetric bubbles in tubes with closed steady laminar toroidal wakes may only be
observed for Re < 200 (cf. Campos & Guedes de Carvalho 1988), quite similar to the
case of bubbles rising in an extended liquid (cf. Wegener & Parlange 1973; Bhaga &
Weber 1981). For relatively short Taylor bubbles in tubes, capillary waves propagating
from tail to nose were observed on the bubble surface (Nigmatulin & Bonetto 1997;
Liberzon, Shemer & Barnea 2006). The analysis of Liberzon et al. (2006) supported
the mechanism of pure capillary wave excitation from oscillatory open wakes in the
unsteady bubble tail. Therefore, the computed steady axisymmetric solutions here
for Re> 200 may not provide predictions of real observable phenomena, but rather
satisfy theoretical curiosities.

Tables 4, 5, and 6 are lists of computed parameters for bubble volume 4 π/3, 2 π,
and 3 π at Re= 10, 100, and 300, respectively. Although a bubble of volume 4 π/3
corresponds to Rb = 1, i.e. the volume-equivalent radius of the bubble is the same
as the tube radius, it is ready to take a shape with nose and tail that is almost the
same as those of larger bubbles of volume 2π and 3π. The values of Fr for Re= 10,
100, and 300 in tables 4, 5, and 6 agree well with the universal correlation formula
of Viana et al. (2003) for ReG � 10, which yields 0.235 (for ReG =41 and Eo = 168),
0.330 (for ReG = 306.5 and Eo =94), and 0.337 (for ReG =893 and Eo =88.7). The
flow structures around the bubble nose and bubble tail also appear to be invariant for
Rb � 1. For example, the wake length l ≡ zwake − zmax for bubble volume 4π/3, 2π, and
3π at Re =100 is respectively 1.328, 1.345, and 1.340. At Re= 300, the wake length l

becomes 1.824, 1.815, and 1.845 respectively for bubble volume 4π/3, 2π, and 3π, with
variations still rather insignificant despite the noticeable bubble tail shape differences.

If the annular liquid film has a constant thickness (as often assumed in theoretical
treatments), the value of rz = 0 is expected to be the same as rmax and the film thickness
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may be evaluated as 1 − rmax. However, figures 6–8 indicate that the strictly uniform
liquid film thickness may only be obtained at lower Re (i.e. �10 for We = 10).
Therefore, a comparison between 1 − rz=0 and 1 − rmax can be used to indicate the
degree of general film uniformity, and as a basis for analysing local film flow. To
faciliate further analysis, the tangential velocity of liquid flow along the free surface
vz=0 and vmax (usually located close to rmax) are also listed in tables 4–6. Apparently,
the liquid film thickness as represented by either 1 − rmax or 1 − rz=0 decreases with
increasing Re. The local tangential liquid flow velocity along the free surface vmax

and vz=0 increases with rmax and rz=0 due to the conservation of mass.
Following the laminar film flow analysis of Brown (1965), by solving equation

1

r

∂

∂r

(
r
∂u

∂r

)
=

∂p

∂z
= −St , (4.1)

where p denotes the piezometric pressure as in (2.1), with appropriated boundary
conditions one could obtains

u =
St

2

(
1 − r2

2
+ r̂2 ln r

)
+ 1, (4.2)

where r̂ � r � 1 with r̂ denoting the radial coordinate of the local free surface of the
uniform liquid film, as can be determined by considering conservation of mass

St
[

1
4

− r̂2 + r̂4
(

3
4

− ln r̂
)]

− 2r̂2 = 0. (4.3)

For the case of Re= We =10 where the annular draining film appears quite uniform,
the computed values of St are basically identical, being equal to 42.03, 42.03, and
42.07, respectively for bubbles of volume 4π/3, 2π, and 3π. (Consistent with (4.1) for
a uniform annular draining film, the actual values of ∂p/∂z evaluated at z = 0 are
−40.91, −41.84, and −42.06, within a few percent of the corresponding values of
−St .). The values of r̂ determined by (4.3) are 0.7083, 0.7084, and 0.7084, respectively.
The corresponding values of û (calculated from (4.2) at r = r̂) are 2.599, 2.600,
and 2.600, respectively. Not surprisingly, the values of rz=0 and vz=0 as well as
rmax and vmax in table 4 approach the theoretical values r̂ and û for a perfectly
uniform liquid film (determined from (4.2) and (4.3)) on increasing the long-bubble
volume.

For the case of Re= 100 and We =10, however, the bubble of volume 3π has the
computed St value of 234.90 that leads to r̂ = 0.8262 and û = 4.331, quite close to the
values of rmax and vmax rather than rz=0 and vz=0 in table 5 because the liquid film
thickness is not perfectly uniform. Further increasing Re to 300 (at We =10) results
in St =665.25 for a bubble of volume 3π, which leads to r̂ = 0.8747 and û= 5.995.
Although the values of r̂ and rmax are about the same, the value of û is about 10%
less than vmax in table 6, suggesting slightly enhanced non-uniformity in the annular
draining liquid film.

To understand the insensitivity of long-bubble terminal velocity to the bubble length
(or bubble volume), it can be instructive to examine the z-component of traction, or
z-traction, Tz on the bubble surface, where

Tz ≡ ez · (−pan − n · T) = −nz

[
−(p − pa) + 2

∂vz

∂z

]
− nr

(
∂vz

∂r
+

∂vr

∂z

)
, (4.4)
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Figure 9. (a) The z-traction Tz along the bubble surface for bubbles of volume (i) 4π/3, (ii)
2π, and (iii) 3π, and (b) pressure contours (from p = −300 to 700 in increments of 50) for a
bubble of volume 2π at Re= 100 and We= 10.

with nz, nr denoting the z-, r-components of the local unit normal vector n. Thus, the
drag force can be computed by integrating Tz along the bubble surface as

2π

∫
Sf

Tzr ds. (4.5)

It should be noted that the constant excess pressure term pa inside the bubble does
not contribute to the integrated drag force; it only serves here as a common reference
pressure for comparison purposes. The expression (4.4) makes it clear that in a
uniform annular film where nz ∼ 0 and nr ∼ 1, the value of Tz must diminish because
∂vz/∂r ∼ 0 due to the shear-free boundary condition and vr ∼ 0 due to (uniform) film
flow (cf. Brown 1965). Thus, the drag force on the bubble mainly comes from the
hydrodynamic stresses on the surface segments of the bubble nose and tail. This is
shown in figure 9 with a plot of the z-traction Tz versus axial coordinate z along
the bubble surface for volume 4π/3, 2π, and 3π, and (piezometric) pressure contours
around a bubble of volume 2π at Re =100 and We =10. As expected, Tz of significant
magnitude can only be found on the bubble nose and tail. Moreover, the general
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magnitude of Tz increases with the bubble volume, providing greater drag force to
balance the buoyancy force for bubbles of greater volumes.

Because the flow velocity field v around the bubble nose and tail appears very
similar for (long) bubbles of different volumes, the contribution of viscous stresses
to the drag force must be independent of the bubble length. For the piezometric
pressure field p, although a considerable gradient (with respect to z) appears along
the draining liquid film, the local value of Tz remains almost negligible because of
local nz ∼ 0 along a nearly uniform film. As indicated in (4.1), p is expected to decrease
almost linearly with z along a draining liquid film, with a constant slope about −St
independent of bubble volume. Because the piezometric pressure p has the hydrostatic
component subtracted out, its local gradient distribution around the bubble nose and
tail, where the flow field and free surface shape are independent of bubble volume,
are not expected to vary much for bubbles of different volumes. (The values of
p(z = zmin) − p(z = zmin +1) around the bubble nose are 207, 210, and 211 respectively
for bubble volume 4π/3, 2π, and 3π, while those of p(z = zmax − 1) − p(z = zmax) are
158, 155, and 155.) Hence, it must be the gradient of p across the draining liquid
film that is mainly responsible for adapting the local value of p (and thus the relative
magnitude of Tz) around the bubble nose and tail, such that the integrated drag force
is in the right proportion to the bubble volume to balance the buoyancy force. To
illustrate this fact, values of �p/�z, where

�p

�z
≡ p(z = zmax − 1) − p(z = zmin + 1)

zmax − zmin − 2
(4.6)

is used here to measure the pressure gradient across the draining film length (for lack
of a better definition), are evaluated as −228, −231, and −233 for bubble volume
4π/3, 2π, and 3π, indicating a nearly constant pressure gradient. The slopes of p

evaluated at z = 0 are −230.36, −232.90 and −234.09 for bubbles of volume 4π/3,
2π, and 3π, still having a magnitude comparable to the corresponding values of
St = 234.85, 234.91, and 234.90 despite the fact that the draining liquid film thickness
is not perfectly uniform for Re = 100 and We =10.

Therefore, an idealized long bubble may be considered as a circular cylinder of uni-
form cross-section connecting a nose and a tail. At a given set of Re and Ca, bubbles
of different lengths differ only by the length of the cylinder but with identical nose
and tail. The z-traction Tz is effectively zero on the free surface of a perfectly uniform
cylinder, along which p decreases linearly in the flow direction with a slope of the same
magnitude as St (i.e. the hydrostatic pressure gradient, as exemplified by a bubble of
volume 3π at Re = We =10 that has ∂p/∂z = −42.06 at z = 0, �p/�z = −42.06, quite
close to the computed St = 42.07). Hence, the difference in piezometric pressure across
the length of the uniform cylinder exactly balances the cylinder portion of bubble
volume contribution to the buoyancy force thereby the terminal velocity (i.e. the value
of Fr) of a long bubble (with nearly uniform draining film) becomes independent
of its length (or volume). When the draining liquid film is not substantially uniform
(e.g. for cases of Re � 100 and We = 10), however, the value of −�p/�z is reduced
from that of St. In this case, the small contribution of Tz (because the conditions
nz ∼ 0 and nr ∼ 1 may no longer be satisfied) along the surface of draining film to the
drag force must compensate the reduced piezometric pressure difference across the
draining film length to retain the bubble length independence of Fr. Thus, uniformity
of the draining liquid film becomes an important indicator for determining whether
a long bubble can be described well by the idealized long-bubble model.
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On the surface of the annular draining liquid film where the curvature term n ·dt/ds

is expected to diminish and dz/ds ∼ 1, (2.3) may be approximated by

r =
1

Ca [pa − p − St z + 2 ∂vr/∂r]
. (4.7)

For flow in a perfectly uniform film, the value of ∂vr/∂r should be zero. Thus, the
relative magnitude of ∂vr/∂r may also be a useful indicator of the draining film non-
uniformity. For example, the computed values of pa − p(z = 0) are 15.83, 14.13, and
13.03 respectively for bubbles of volume 4π/3, 2π, and 3π (at Re = 100 and We =10),
whereas the corresponding local values of ∂vr/∂r at z = 0 are −1.225, −0.712, and
−0.333, indicating the liquid film uniformity improves with increasing bubble volume.
Substituting these values in (4.7) yields r(z = 0) = 0.75, 0.79, and 0.81, whereas the
numerical solutions of r(z = 0) are actually 0.79, 0.80, and 0.82, respectively for
bubbles of volume 4π/3, 2π, and 3π, consistent with film uniformity improving with
increasing bubble volume.

Of particular interest for theoretical analysis is the radius of mean curvature at the
bubble nose (often called frontal radius), which can be determined by

Rfrontal =
2

Ca [pa − p − St z + 2 ∂vz/∂z]
at z = zmin. (4.8)

For bubbles of volume 4π/3, 2π, and 3π, the values of Rfrontal obtained according
to (4.8) are 0.6499, 0.6504, and 0.6503, respectively (at Re = 100 and We = 10).
The frontal radius appears to be significantly less than r ∼ 0.80 at z = 0, indicating
a bubble nose of prolate-like rather than spherical shape as commented by Bugg
et al. (1998) and also consistent with the findings of Funada et al. (2005) with the
ovary ellipsoid approximation. At the centre of the bubble tail, the radius of local
mean curvature can be calculated in a similar way as −0.9205, −0.8839, and −0.8542
for bubbles of volume 4π/3, 2π, and 3π, respectively. This indicates that the bubble
tail deformation is enhanced slightly as bubble volume increases, although the frontal
radius of the bubble nose seems to be independent of bubble volume.

To successfully compute solutions for deformable long bubbles moving in round
tubes, a suitable finite-element meshing scheme must be carefully set up. Figure 10
shows a few meshing examples (with 961 elements and 4053 nodes) for long bubbles
of volume 3π at Re= 10, 100, and 300. The mesh for a long bubble in figure 10
is constructed differently from that in figure 1 for bubbles in relatively large tube,
to accommodate the long-bubble shape deformation. The present meshing scheme is
shown to be capable of following various challenging free-surface deformations for a
range of values of Re at We =10.

Although solutions for small Re (such as Re =1) can be computed at We =10,
the local mesh distribution (without special adjustments) at the bubble tail may not
be as desirable due to the highly localized concave deformation of the free surface.
However, the computed values of ReG, Fr, and Eo can be obtained respectively as
10.208, 0.0980, and 1041.9 for a bubble of volume 2π (at Re = 1 and We =10), still
in good agreement with the universal correlation formula given in (3.1) for ReG � 10
that yields Fr =0.0950.

4.2. Long bubbles (of volume 2π) at We =1

Because the long-bubble behaviour in a tube does not seem to vary with the bubble
volume (as shown in figures 6–8), cases with bubbles at a particular bubble volume 2π
are expected to be reasonably representative. When the surface tension effect becomes
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Figure 10. Mesh around a long bubble of volume 3π for (a) Re= 10, (b) 100, and
(c) 300 at We= 10.

more important, the concave deformation at the bubble tail (commonly seen in cases
at We = 10) disappears at We =1 as shown in figure 11 for bubbles of volume 2π
at various values of Re. Both the bubble nose and bubble tail take rather round
(convex) shapes at Re = 10. But at Re= 50, a slightly bulging rim forms at the bubble
tail. At Re =100, the bulging rim becomes quite clear at the bubble tail where the
free surface also shows a slight waviness along the drainage liquid film. The waviness
of bubble tail deformation seen at Re = 100 becomes more pronounced at Re = 300.
The significant surface tension effect resulting in non-uniformity (or unevenness) of
the liquid film seems to be somewhat counter-intuitive; it indicates the complexity
of nonlinear interaction between capillary surface curvature and inertial effect of
drainage flow in the liquid film.

On the other hand, the stronger surface tension effect prevents high-curvature
deformation at the bubble tail rim; consequently, flow separation does not occur until
Re > 75 and the toroidal vortex in the bubble wake appears rather small for the case
of Re =100. Even at Re= 300, the toroidal vortex is still quite limited in size with
streamlines concentrated toward the tube centreline, leaving an apparently stagnant
annular region along the tube wall behind the bubble tail.

Table 7 shows the computed parameters for bubbles of volume 2π at various values
of Re at We =1. Compared with the case at We =10, the value of Eo is considerably
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Re ReG Fr Eo vz=0 rz=0 vmax rmax zmin zmax zwake

1 10.736 0.09314 115.27 2.336 0.6746 2.336 0.6746 −2.608 2.477 −
10 51.212 0.1953 26.227 2.928 0.7421 3.015 0.7523 −2.235 1.957 −
50 212.21 0.2356 18.014 3.944 0.8114 4.232 0.8238 −1.962 1.580 −
80 331.95 0.2410 17.217 4.275 0.8286 6.498 0.8893 −1.913 1.515 1.829

100 412.26 0.2426 16.996 4.443 0.8366 7.135 0.8994 −1.894 1.497 2.455
300 1209.3 0.2481 16.248 4.501 0.8516 9.765 0.9227 −1.851 1.466 2.868

Table 7. Values of ReG, Fr, Eo, vz=0, rz=0, vmax , rmax , zmin, zmax, and zwake for bubbles of
volume 2π at Re= 1, 10, 50, 100, and 300 for We= 1.

(a)

(b)

(c)

(d)

Figure 11. Streamlines and shapes of bubbles of volume 2π for (a) Re= 10, (b) 50, (c) 100,
and (d) 300 at We= 1.

smaller at We =1 and so is that of Fr as a consequence of stronger surface tension
effect and thinner annular film for liquid drainage as indicated by greater rmax values
in table 7. Owing to conservation of bubble volume, greater rmax also corresponds to
a shorter bubble and higher tangential velocity vmax. The general agreement between
the present computational results and (3.1) seems quite reasonable: substituting the
values of ReG and Eo into (3.1) for ReG � 10 yields Fr =0.0963, 0.203, 0.253, 0.252,
0.252, and 0.246 for Re = 1, 10, 50, 80, 100, and 300.

For the case of Re= 1 and We = 1, the values of rmax and vmax are basically the
same as rz=0 and vz=0 in table 7, indicating the general uniformity of draining liquid
film. Not surprisingly, (4.2) and (4.3) predict r̂ = 0.6751 and û= 2.341 (based on the
computed St of 28.817 for the bubble of volume 2π). The draining liquid film appears
still quite uniform for the case of Re =10 and We =1 (cf. figure 11 and table 7).
Therefore, the computed St of 65.657 leads to r̂ = 0.7441 and û= 2.954, comparable
to the values of rmax and vmax as well as rz=0 and vz=0 in table 7. For the case of
Re= 100 and We =1, however, the computed St is 424.89 that leads to r̂ =0.8556
and û = 5.207, taking values between rmax, vmax and rz=0, vz=0 (cf. table 7) due to the
free surface waviness.
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Figure 12. (a) The z-traction Tz along the bubble surface for bubbles of volume (i) 4π/3, (ii)
2π, and (iii) 3π, and (b) pressure contours (from p = −1300 to 1100 in increments of 100) for
a bubble of volume 2π at Re= 100 and We= 1.

As a comparison, the computed values of Fr for bubbles of volume 4π/3 and 3π
at Re = 100 and We =1 are respectively 0.2474 and 0.2430, quite close to that for
bubbles of volume 2π in table 7.

Similar to figure 9, figure 12 shows a plot of Tz versus z along bubble surfaces
for volume 4π/3, 2π, and 3π, and contours of p around a bubble of volume 2π at
Re = 100 and We =1. Despite some ‘bumps’ in the Tz profile toward the bubble tail as
a consequence of the local waviness in the draining liquid film, values of Tz are still
significant around the bubble nose and tail with greater amplitude of Tz for bubbles
of larger volume. Thus, Tz over most of the draining liquid film region is expected to
contribute little to the integrated drag force. Unlike figure 9 for Re = 100 and We =10,
the contours of p in figure 12 for Re= 100 and We =1 appear somewhat uneven in
the wavy liquid film, where the conditions nr ∼ 1 and nz ∼ 0 are not expected to be
satisfied and Tz along the non-uniform liquid film is anticipated also to contribute
to the integrated drag force. Not surprisingly, the values of −�p/�z (cf. (4.6)) for
bubbles of volume 4π/3, 2π, and 3π, respectively equal 671, 389, and 385, whereas
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Figure 13. Streamlines and shapes of bubbles of volume 2π for (a) Re= 50, (b) 100, (c) 300,
and (d) 500 at We= 0.1. A few contours of streamfunction are added for 0.4, 0.45, 0.47 in (b)
and for 0.47, 0.57, 0.59, 0.60, 0.61, 0.62, and 0.63 in (c) and (d) to improve the visualization of
the recirculation flow in the wake.

St =409, 425, and 423. As expected, the bubble of volume 4π/3 does not have much
of a liquid film that can be described by the idealized draining film theory. Even for
bubbles of volume �2π, the value of −�p/�z is reduced from that of St by about
10%. Thus, the idealized long-bubble model based on uniform film may need to be
modified for describing bubbles with noticeable film non-uniformities.

4.3. Long bubbles (of volume 2π) at We = 0.1

At We =0.1, figure 13 shows that along the free surface flow does not separate at
all even up to Re =500. However, recirculating eddies can appear (for Re � 100) in
the bubble wake, not exactly associated with flow separation at the free surface but
rather due to the curved high-speed stream emitted from the bubble’s bulging rim
that constricts the draining liquid flow to a narrow annular film and then suddenly
releases the high-speed flow into a large space behind the bubble tail. Up to two
toroidal recirculating eddies may be identified: one seems to be rather weak adjacent
to the tube wall but slightly away from the bubble tail (as more apparent for cases of
Re= 300 and 500), and the other appears relatively intense inside the bulk fluid. These
recirculating eddies typically extend very far downstream and do not have streamlines
connecting to the tube centreline or any boundaries. Relatively smaller curvature at
the bubble tail rim at smaller We is expected to prevent flow separation from the
free surface (cf. Batchelor 1967; Ryskin & Leal 1984). But the inertial effect at large
enough Re combined with the shear-free condition along free surface tends to lead
the streamlines toward the tube centreline, resulting in a vacuum zone immediately
after the bubble rim bulge at the nearby solid tube wall. This type of complicated
recirculating eddy in the bubble wake can only be expected in the presence of a
nearby solid wall (where the no-slip boundary condition is observed) from which the
flow deviates away due to curved free surface.
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Re ReG Fr Eo vz=0 rz=0 vmax rmax zmin zmax

1 14.589 0.06854 21.284 2.768 0.7267 2.822 0.7342 −2.307 2.002
10 98.645 0.1014 9.7308 4.110 0.8166 5.489 0.8668 −1.889 1.646
50 448.33 0.1115 8.0400 5.596 0.8649 10.543 0.9315 −1.716 1.466

100 900.25 0.1111 8.1046 6.839 0.8894 13.339 0.9469 −1.675 1.398
300 2703.8 0.1110 8.1236 8.560 0.9191 15.524 0.9575 −1.654 1.296
500 4488.2 0.1114 8.0577 8.870 0.9266 15.835 0.9598 −1.650 1.280

Table 8. Values of ReG, Fr, Eo, vz=0, rz=0, vmax, rmax, zmin, and zmax for bubbles of volume 2π
at Re= 1, 10, 50, 100, 300, and 500 for We= 0.1.

Compared with the case at We =10, the free surface of the annular liquid film is not
as smooth, indicating that the thickness of draining liquid film is rather non-uniform
at We =0.1. However, the short-wavelength free-surface unevenness as seen in the
case of We =1 for Re � 100 disappears at We =0.1 even up to Re = 500. There is a
pronounced bulge at the bubble trailing surface forming the narrowest flow passage
in the annular liquid film. But before reaching the bubble tail bulge, the liquid film
thickness seems to be reasonably smooth and uniform, especially for Re � 50. As
for that shown in figure 11, increasing Re (i.e. the inertial effect) tends to induce
unevenness in the draining liquid film especially when We � 1.

Table 8 shows the computed parameters for bubbles of volume 2π at various values
of Re at We =0.1. Again the agreement between the present computational results
and that of universal correlation formula by Viana et al. (2003) is quite reasonable.
(Substituting the corresponding values of ReG and Eo in (3.1) for ReG � 10 yields
Fr = 0.0721, 0.116, 0.106, 0.107, 0.108, and 0.106 for Re = 1, 10, 50, 100, 300, and 500,
respectively.)

For the case of Re= 1 and We =0.1, the bubble of volume 2π has the computed
St of 53.210 that leads to r̂ = 0.7277 and û= 2.780 (obtained from (4.3) and (4.2)),
close to the values of rz=0 and vz=0 in table 8 because the draining liquid film is still
reasonably uniform (at small Re) except around the bubble tail bulge where rmax and
vmax are located. For the case of Re= 10 and We =0.1, the computed St is 243.27 and
the corresponding r̂ and û are respectively 0.8281 and 4.378, also comparable to the
values of rz=0 and vz=0 in table 8, indicating the validity of the laminar film flow theory
of Brown (1965) based on the assumption of uniform film thickness. For the case
of Re = 100 and We =0.1, however, laminar film flow theory yields r̂ = 0.9123 and
û = 8.557, corresponding to the computed St of 2026.15, taking values between rmax,
vmax and rz=0, vz=0 in table 8 as expected when the liquid film becomes considerably
non-uniform (see figure 13).

A comparison among the data in tables 5, 7, and 8 for Re = 100 at We =10, 1,
and 0.1 reveals a clear trend of decreasing bubble length L ≡ zmax − zmin (i.e. 3.560,
3.391, and 3.073) and increasing rmax (i.e. 0.8203, 0.8994, and 0.9469 for bubbles of
volume 2π). As a consequence of narrowing the annular flow film, the value of Fr
also decreases whereas the value of vmax increases on reducing We and Eo due to the
enhanced surface tension effect.

Figure 14 shows a plot of the z-traction Tz versus axial coordinate z along the
bubble surface for bubbles of volume 4π/3, 2π, and 3π, and contours of p around a
bubble of volume 2π at Re =100 and We =0.1. Compared with those in figures 9 and
12, the Tz distributions in figure 14 for Re =100 and We =0.1 indicate that a bubble
of volume 4π/3 may not share many characteristics of typical long bubbles because
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Figure 14. (a) The z-traction Tz along the bubble surface for bubbles of volume (i) 4π/3, (ii)
2π, and (iii) 3π, and (b) pressure contours (from p = −2000 to 4400 in increments of 200) for
a bubble of volume 2π at Re= 100 and We= 0.1.

Tz around its nose shows a dissimilar distribution from that for bubbles of larger
volumes. Almost coincidentally Tz around the bubble nose for a bubble of volume
2π overlaps with that for a bubble of volume 3π. The non-uniformity of the annular
draining liquid film is reflected by the fact that values of −�p/�z = 746, 1074, and
1476, not even close to each other and differing significantly from the corresponding
values of St = 2087, 2026, and 1959 for bubbles of volume 4π/3, 2π, and 3π. In this
case, the uniform film flow theory (4.1) is no longer applicable. Thus, the analysis of
flow in such a non-uniform draining liquid film and the mechanisms for bubbles of
different volumes to rise at the same velocity is not expected to be as straightforward
as that in § 4.1 for a relatively uniform film. Despite differences in detailed distribution
profiles of Tz for bubbles at different values of We (for Re = 100 as shown in figures 9,
12, and 14), it becomes quite clear that the value of Tz in (most of) the draining liquid
film region is of insignificant magnitude (generally <10% if not negligibly small)
compared with that around the bubble nose and tail. Even for bubbles with a quite
non-uniform draining film along which Tz does not always vanish, the piezometric
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(a)

(b)

(c)

Figure 15. Streamlines and shapes of bubbles of volume 3π for Re= 100 at (a) We= 0.1, (b)
0.01 and (c) 0.001. A few contours of streamfunction are added at 0.4 and 0.45 in (a) at 0.4,
0.45, and 0.55 in (b), and at 0.4, 0.45, 0.55, and 0.6 in (c) to improve visualization of the
recirculation flow in the wake.

pressure difference across the non-uniform film can still adapt the local magnitude
of Tz around bubble nose and tail in the right proportion according to the bubble
length, to ensure that the drag force balances the buoyant force on bubbles of different
volumes with basically the same flow structure for a given set of Re and Ca.

With available solutions of p, St, pa , and 2∂vz/∂z respectively for bubble volume
of 4π/3, 2π, 3π at Re =100 and We =0.1, the corresponding Rfrontal according to
(4.8) can be obtained as 0.6316, 0.6784, and 0.6765. At the centre of the bubble tail,
the values for radius of local mean curvature are also calculated as 1.960, 2.104,
and 2.084, respectively for bubble volume of 4π/3, 2π, and 3π, suggesting that the
bubble tail profile varies very little for bubbles of volume �2π. According to (4.7),
however, the radius of curvature at the annular film surface r at z = 0 would be
1.17, 0.80, and 0.99, whereas the numerical solutions of r(z = 0) = 0.84, 0.89, and
0.90, respectively for bubble volume of 4π/3, 2π, and 3π. The physically unacceptable
result of r = 1.17 > 1 for a bubble of volume 4π/3 invalidates the assumptions behind
(4.7) due to significant lack of film thickness uniformity.

Despite significant unevenness in the distribution of p along the bubble surface
(see figure 14) due to relative strong surface tension influence, the computed values
of Fr for bubbles of volume 4π/3 and 3π at Re =100 and We =0.1 are respectively
0.1095 and 0.1130, surprisingly still quite insensitive to the bubble volume variation.

4.4. Long bubbles (of volume 3π) at We � 0.1

For cases of small Weber number with short bubble length, results for bubbles
of volume 3π are illustrated here. Figure 15 shows streamlines around bubbles at
Re = 100 for We = 0.1, 0.01, and 0.001. Not surprisingly, the streamline structure
around a bubble of volume 3π at We =0.1 is basically the same as that in figure 13
for a bubble of volume 2π at Re= 100 with a serpentine streamline in the wake. For
We =0.01 or smaller, the bubble shapes exhibit few free-surface features with nose
and tail both round, except that the recirculating wake structure (seen in figure 13) is
further enhanced with the thinning liquid film.
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We ReG Fr Eo vz=0 rz=0 vmax rmax zmin zmax

0.1 885.19 0.1130 7.836 7.732 0.9047 13.332 0.9468 −2.308 1.994
0.05 1149.5 0.08699 6.607 9.869 0.9260 16.515 0.9583 −2.240 1.968
0.02 1682.9 0.05942 5.665 13.321 0.9445 24.720 0.9694 −2.170 1.934
0.01 2282.7 0.04381 5.211 16.312 0.9542 29.365 0.9764 −2.123 1.909
0.005 3114.7 0.03211 4.850 19.830 0.9624 38.204 0.9802 −2.084 1.890
0.002 4729.1 0.02115 4.473 26.028 0.9712 59.605 0.9870 −2.043 1.868
0.001 6520.9 0.01534 4.252 32.358 0.9767 73.365 0.9893 −2.018 1.854

Table 9. Values of ReG, Fr, Eo, vz=0, rz=0, vmax , rmax, zmin, and zmax for bubbles of volume 3π
at Re= 100 for We= 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, and 0.001.

Table 9 shows the computed parameters for bubbles of volume 3π for various values
of We at Re = 100. Substituting the values of Eo in (3.1) for Re =100 yields Fr =0.102,
0.0521, and 0.0367 for We =0.1, 0.01, and 0.001. The agreement between the present
computational values of Fr and those of the universal correlation formula (for
ReG > 200) by Viana et al. (2003) seems to deteriorate as We < 0.02 (and Eo < 5.66).
This is not surprising because Viana et al. (2003) did not include the highly scattered
data for Eo < 6 in their correlation construction. The values of vmax and rmax in table 9
for We =0.1 are very much the same as those in table 8 for Re= 100, because the
bubble tail bulge is expected to be independent of the bubble volume. However, the
values of vz=0 and rz=0 (in table 9 for We =0.1) differ noticeably from those in table 8
for Re = 100, indicating that the uniformity of the liquid film thickness can still be
influenced by the bubble volume in the interval of 2π to 3π. Increasing the bubble
volume tends to reduce the differences between vz=0, rz=0 and vmax, rmax.

The laminar film flow theory of Brown (1965) (i.e. (4.2) and (4.3)) predicts r̂ =0.9113
and û= 8.466 for computed St =1958.9 for a bubble of volume 3π at Re= 100 and
We =0.1, improving the agreement with the corresponding values of rz=0 and vz=0

from those for a bubble of volume 2π (cf. table 8) because the liquid film thickness
uniformity is expected to improve with longer bubbles. For a bubble of volume 3π at
Re= 100 and We =0.01, (4.2) and (4.3) yield r̂ =0.9521 and û = 15.676 for computed
St =13026.8, in reasonable agreement with the corresponding rz=0 and vz=0 in table 9.
Even at We =0.001 with computed St = 106304, the values of r̂ and û calculated from
the larminar film flow theory are respectively 0.9760 and 31.291, still comparing well
with the corresponding rz=0 and vz=0 in table 9, indicating that the thickness of the
annular liquid film must be reasonably uniform except around the free-surface bulge
(characterized by rmax and vmax) toward the bubble tail when the surface tension effect
becomes increasingly significant.

Although bubbles of smaller volumes do not share many of the characteristics
(such as the value of frontal radius) of typical long bubbles, their rising velocity in
the same tube and liquid seems to remain at about the same value as those bubbles of
much larger volumes. As a check, the computed values of Fr for bubbles of volume
4π/3 and 2π at Re = 100 and We = 0.01 are respectively 0.03931 and 0.04489, whereas
at We =0.001 they are 0.01533 and 0.01523, respectively.

4.5. Comparison of long-bubble surface profiles with previous publications

Despite the fact that long bubbles have been studied by numerous authors, well-
documented images of complete bubble surface profiles with steady laminar flow can
only be found in a few publications. For example, a couple of experimental bubble
images are shown in Viana et al. (2003), with bubble surface profiles at relatively small
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Figure 16. Streamlines and shapes of bubbles at (a) (Re,Ca) = (3, 10), (b) (13, 10), (c) (24, 0.2),
(d) (106, 0.08), and (e) (160, 0.05), with corresponding volume 4π/3, 4π/3, 4π/5, 3π/2, and
46π/50.

Re but large Eo having a tail that forms a gas ‘cup’ holding up a small mass of liquid.
Campos & Guedes de Carvalho (1988) published a series of photographs visualizing
flow in the steady laminar wake of long bubbles at 25 � Re � 180 and We > 5; they
found the wake becoming oscillatory for Re > 180 and turbulent at large values of Re.
With a volume-of-fluid method, Tomiyama et al. (1996) computed twelve cases of long
bubble shapes to compare with their own experiments for bubbles at relatively low
Re (e.g. � 90) and Eo (e.g. <40). Bugg et al. (1998) presented computational bubble
surface profiles in their figure 2 for the nine cases with tabulated parameter values.

Figure 16 shows a few bubble surface profiles with streamlines computed at Re= 3,
13, 24, 106, and 160 with Ca = 10, 10, 0.2, 0.08, and 0.05, respectively for bubbles
of volume 4π/3. 4π/3, 4π/5, 3π/2, and 46π/50. The results at Re= 3 and 13 for
Ca = 10 (with ReG =18.58, Eo =1150.39, Fr =0.1615, and 48.60, 1817.14, 0.2675,
respectively) are quite similar to the experimental cases at Eo = 2600 and Re =3
and 13 (with corresponding Fr =0.1426 and 0.2547) presented by Viana et al. (2003),
where the bubble tails were found to form a gas ‘cup’ with liquid trapped therein. The
computation becomes more difficult with increasing Ca; therefore no particular effort
is made here to obtain solutions beyond Ca = 10. For the cases of (Re,Ca) = (24, 0.2),
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Figure 17. Streamlines and shapes of bubbles of volume 2π for (a) Re= 21 and Ca = 0.12,
(b) Re= 90 and Ca = 0.039, (c) Re= 30 and Ca = 0.3, and (d) Re= 850 and Ca = 1/2850.

(106, 0.08), and (160, 0.05) with the values of bubble volume adjusted to produce
bubble length L =1.892, 2.787, and 1.874, the computed values of ReG are respectively
85, 325, and 485 for comparison with the photographs of Campos & Guedes
de Carvalho (1988) at ReG = 84, 325, and 483 with corresponding bubble length
L =1.895, 2.737, and 1.895. The computed corresponding values of Fr are 0.2816,
0.3257, and 0.3298, which appears slightly smaller than those computed by Taha &
Cui (2006) who reported Fr =0.30 and 0.351 for ReG = 84 and 325 but did not present
results for ReG =483. For (Re, Ca) = (106, 0.08) and (160, 0.05), the computed length
of the toroidal vortex in the wake are l = 1.390 and 1.694, also comparable with those
measured by Campos & Guedes de Carvalho (1988) of about 1.39 and 1.78.

Shown in figure 17 are surface profiles with streamlines for bubbles of volume
2π at Re= 21, 90, 30, and 850, with corresponding Ca = 0.12, 0.039, 0.3, and
1/2850, respectively. The cases at (Re, Ca) = (21, 0.12) and (90, 0.039) with (ReG, Eo,
Fr) = (81.1, 37.6, 0.259) and (294.8, 37.4, 0.306) have been computed for comparison
with the corresponding computational cases of Tomiyama et al. (1996) at Eo = 37.3
for Mo ≡ Eo3/Re4

G =1.26 × 10−3 (ReG = 80.1) and 6.92 × 10−6 (ReG = 294.3), where
the case of ReG = 80.1 was shown to have no vortex in the wake whereas that of
ReG = 294.3 consisted of a small toroidal vortex of a length about 0.5. But the present
computed result for the case at ReG = 294.8 shows a wake with length l =1.24.
The case at Re = 30 and Ca = 0.3 with (ReG, Eo, Fr) = (100, 100, 0.2989) looks quite
similar to the corresponding results computed by Bugg et al. (1998), which are also
similar to the case of Re =27 and Eo = 100 studied by Bugg & Saad (2002). However,
the bubble surface profile computed with the Galerkin finite-element method here
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at Re= 850 and Ca = 1/2850 with (ReG, Eo, Fr) = (5000, 10, 0.1700) does not have
a convex oblate spheroidal tail like that obtained by Bugg et al. (1998) using the
volume-of-fluid method for ReG = 5620 and Eo = 10; it rather exhibits a similar
profile to that in figure 13 for Re =500 and We =0.1 (Ca = 1/5000) with a concave
tail. Some waviness along the liquid film appears adjacent to the tube wall, as expect
when the value of Re is large while the surface tension effect is significant.

As a check, the values of Fr obtained from (3.1) are 0.299, and 0.146 for
(ReG, Eo) = (100, 100) and (5000, 10), respectively. A noticeable (>10%) discrepancy
in Fr for the case of ReG = 5000 and Eo =10 occurs between the present computational
result and (3.1). But Fr = 0.179 was reported by Bugg et al. (1998), computed at
ReG = 5620 and Eo =10 to compare with 0.17 of White & Beardmore (1962), agreeing
reasonably well with the present value of 0.170.

5. Summary and discussion
The solutions for buoyancy-driven steady axisymmetric motion of a gas bubble of

various relative volumes through viscous liquid in a round tube are computed using a
Galerkin finite-element method with a boundary-fitted mesh. Both the liquid flow field
and free-surface profile can be determined with sufficient accuracy in great detail.
Valuable information can then be revealed via systematically computed numerical
solutions, as in the present work, for improving our understanding of the behaviour
of bubbles, especially long (Taylor) bubbles, moving in a round tube.

When the bubble is relatively small compared with the tube size (e.g. Rb � 0.25), the
bubble exhibits similar behaviour to that moving in an extended liquid, developing a
spherical-cap shape with increasing Re for Ca ∼ O(1) (similar to that demonstrated by
Feng 2007). The presence of the tube wall tends to reduce the size of the toroidal vortex
in the wake. Although the shape of a bubble of Rb = 0.5 at various Re barely shows
features of long bubbles (or Taylor bubbles), the values of (dimensionless) buoyancy-
driven terminal velocity Fr are found to be much the same as those for larger bubbles
(in the same tube and liquid). The basic long-bubble behaviour can often be readily
seen in a bubble of Rb = 0.75 for most cases, especially when the surface tension
effect is relatively weak. With the capability of the available computational code, only
cases with significant bubble deformations at relatively large values of Eo and Re
are presented in § 3 for Rb < 1. Cases of less deformed bubbles at relatively small
Eo and Re can be found in recent front-tracking computations of Mukundakrishnan
et al. (2007).

As the bubble volume-equivalent radius becoming comparable to the tube radius
(e.g. Rb = 1 and therefore bubble volume equals 4π/3), the bubble exhibits almost
all the long-bubble characteristics, with nose and tail profiles as well as buoyancy-
driven terminal velocity remaining (practically) similar to those for bubbles of greater
volume. This finding is presented here by comparing the numerical results computed
for bubbles of volumes 4π/3, 2π, and 3π at various parameter settings.

If the surface tension effect is relatively weak (e.g. We � 10), long bubbles exhibit
the typical bullet shape (as observed in many experiments) with an annular draining
liquid film of smooth and nearly uniform thickness adjacent to the tube wall, especially
at smaller Re (e.g. �100) or for bubbles of considerably larger length (cf. figures 6
and 7). At Re = 300 (and We =10), the bubble tail develops skirt-like shape (as in
figure 8) with a profile varying slightly with the bubble length. The nearly uniform
thickness of the liquid film adjacent to the tube wall is consistent with the analysis of
laminar film flow by Brown (1965), who established the liquid film drainage theory to
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explain many observed features of the long (Taylor) bubbles. The profiles of bubble
nose and tail are found to be independent of bubble length when the bubble volume
becomes �4π/3 (for We � 10).

With a more significant surface tension effect (e.g. We � 1), however, the annular
draining liquid film can become quite non-uniform especially at large Re (e.g. �50
in figures 11 and 13); the draining liquid film, however, may appear to be uniform
for Re � 10 at We =1 (table 7), and for Re � 1 at We =0.1 (table 8). The formation
of a non-uniform liquid film is also reflected in the piezometric pressure distribution
along the bubble surface (cf. figures 12 and 14 when compared with figure 9). The
values of rz=0 and rmax in table 9 show that even at very small We (e.g. �0.01) with
an extremely thin liquid film, the film thickness (i.e. 1 − rz=0 and 1 − rmax) can vary
by more than 50% due to the presence of a free-surface bulge toward the bubble tail.
Yet, surprisingly, the computed values of Fr for bubbles of volume 4π/3, 2π, and 3π
still indicate that the bubble rising velocity remains (almost) independent of bubble
length. In this case, the liquid film drainage theory of Brown (1965) based on the
assumption of uniform film flow cannot be adequate for accurate analysis (especially
for bubbles of volume <2π). The non-uniformity of the draining liquid film is found
to have a noticeable influence on the local hydrodynamic traction distribution and
its relative contribution to the integrated total drag force on a long bubble.

An examination of the detailed distributions of the z-component of traction (i.e. the
z-traction) Tz on the bubble surface reveals that along most of the draining liquid film
surface it provides a rather insignificant relative contribution to the integrated drag
force on a long bubble. Only on the surface segments around the bubble nose and tail
does Tz exhibit significant magnitudes. Therefore the drag force is mostly generated
there. For bubbles of different lengths at the same Re and Ca, the profiles of Tz look
similar due to virtually the same flow field around bubble nose and tail. However, the
relative magnitude of the Tz profile differs for bubbles of different lengths, generally
greater for a longer bubble. It is the piezometric pressure difference across the length
of a (nearly uniform) draining liquid film that plays a major role in changing the
magnitudes of the local value of p in Tz around the bubble nose and tail to the right
proportion such that the drag force just balances the buoyancy force on a bubble of
given length. An idealized long bubble may be considered as a circular cylinder of
uniform cross-section connecting the nose and tail. Bubbles of different lengths differ
only by the length of the cylinder while having identical nose and tail for a given
set of Re and Ca. With the uniform draining liquid film described by (4.1) having
a free surface with nz = 0 and nr =1, the z-traction Tz is expected to vanish along
the annular film surface where the piezometric pressure p decreases linearly with
a slope equal to −St . Thus, the piezometric pressure difference across the length
of the cylinder becomes exactly proportional to the cylinder length, generating a
drag force according to the bubble length that just balances the buoyancy force.
As a consequence, the rising velocity of long bubbles in the same liquid and same
tube becomes independent of the bubble length. The uniformity of the draining film
indicates how well the idealized long-bubble model can theoretically describe the
independence of bubble rising velocity from bubble volume. Although the precise
description of hydrodynamic mechanisms for a bubble with a non-uniform draining
film may not be as clean and straightforward as that for an idealized long bubble
(with a uniform film), similar analytical logic seems to be applicable.

Over a wide range of parameter values, the bubble nose exhibits a prolate-like shape,
consistent with the finding of Funada et al. (2005) that an ovary ellipsoid (i.e. prolate
spheroid) shape may be assumed for the bubble nose to derive a formula relating Fr
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to Eo, ReG, and ellipsoid aspect ratio. At We = 10 (when the surface tension effect is
relatively weak), the frontal radius of about 0.65 for Re= 100 appears independent
of bubble volume. But the computed bubble tail profile seems to vary as the bubble
length changes (for bubbles of volume between 4π/3 and 3π). Funada et al. (2005)
demonstrated a very good fit to a set of normalized bubble nose profiles by Brown
(1965) (from experiments at We � 10) with an ovary ellipsoid of aspect ratio 0.8
(minor vs. major axes, corresponding to a frontal radius ∼0.704).

The bubble nose profile data of Brown (1965) were obtained from experiments with
bubbles in four different liquids: water, Varsol, Marcol, and Primol, corresponding
to respective parameters (Re, We, Fr) ∼ (4500, 11, 0.346), (3500, 25, 0.342), (200, 20,

0.334), and (25, 15, 0.296). Among these experiments, the cases of Marcol and Primol
are expected to have steady laminar flow without a turbulent wake, and are therefore
computed here at (Re, We) (200, 20) and (25, 15) for a comparison. At Re= 200
and We =20 (for bubble volume 3π), the computed Fr and the frontal radius
Rfrontal are 0.335 and 0.685, whereas at Re= 25 and We =15 they are 0.296 and
0.602. Brown (1965) also found that the free-surface profile in the bubble nose
region is remarkably similar, even though elsewhere it can be significantly different
depending on the fluid parameters; the frontal radius appears to be the same (about
0.75) for all liquids when normalized with the radius of the cylindrical part of the
bubble (as given by r̂ in (4.3) which has been shown to be very close to rmax for
cases of We � 10). If the computed rmax =0.853 and 0.750 are used as r̂ at (Re,
We) = (200, 20) and (25, 15), the corresponding values of Rfrontal/rmax for both cases
are 0.803. For the case of Re= 100 and We =10 analysed in § 4.1, the computed
Rfrontal = 0.65 and rmax =0.82 lead to Rfrontal/rmax = 0.793. For Re = 10, 50, and 300 at
We =10, we have Rfrontal/rmax =0.768, 0.797, and 0.774, respectively. Thus, the present
computational results suggest that the normalized frontal radius Rfrontal/rmax is about
0.785 for We � 10 and Re � 10, slightly greater than the value of 0.75 suggested by
Browm (1965) for the situation where both surface tension and viscous effects are
relatively weak. This seems reasonable because in Brown’s figure 3 – normalized
bubble shape – most of the experimental data appear slightly above the arc of 0.75
radius.

When a sigificant surface tension effect is present, the difference in the value of
frontal radius between bubbles of volume 4π/3 and �2π may become more noticeable,
even though the rising velocity is basically the same. For example, at We =0.1 and
Re = 100, the frontal radius is computed as Rfrontal = 0.6784 and 0.6765 for bubbles
of volume 2π and 3π, whereas Rfrontal = 0.6316 is obtained for a bubble of volume
4π/3. As shown by the computed results presented here for a given bubble volume,
increasing We tends to increase the bubble length while increasing Re slightly reduces
the bubble length. For the case of Re= 100 at We =0.1, a bubble of volume 4π/3 has
a length L =2.361 (<2.5) with a frontal radius (Rfrontal = 0.632), noticeably different
from that for bubbles of volumes �2π (0.677). In contrast, at We =1 and Re = 100,
the length of a bubble with volume 4π/3 becomes 2.505 having a frontal radius
Rfrontal = 0.604, comparable to 0.610 for bubbles of volume �2π. Another example
is We =10 and Re= 300, where the bubble with volume of 4π/3 has a length 2.534
and a frontal radius Rfrontal = 0.673, comparable to 0.674 for bubbles of volume �2π.
Thus, the minimum length for a bubble to retain the same value of frontal radius for
long bubbles seems to be 2.5 as measured in units of the tube radius.

Although various steady axisymmetric solutions of deformable bubbles in round
tubes are obtained at various values of Re and Ca, their stability cannot been
easily examined within the present computational framework. Based on experimental
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observations reported in the literature, bubbles in an extended liquid (or in large tubes)
may become unstable with unsteady open wakes at Reb > 110 (cf. Bhaga & Weber
1981) or Reb > 180 (Wegener & Parlange 1973), whereas long bubbles in round tubes
seem to develop oscillating wakes at Re > 180 (e.g. Campos & Guedes de Carvalho
1988) which may excite capillary waves propagating from tail to nose, especially on
surfaces of relatively short Talyor bubbles (cf. Liberzon et al. 2006). Thus, the steady
axisymmetric solutions at Reb > 200 in § 3 and § 4, such as in figures 4 and 5 for
Re= 600 and in figure 8 at Re= 300 with multiple sharp corners at the bubble rim,
may not represent stable states observable in laboratory experiments. If not stable,
these steady axisymmetric solutions cannot describe real observable phenomena;
however, their existence may have some theoretical importance. Yet, interestingly,
those solutions at large Re still predict values for bubble rising velocity in good
agreement with the universal correlation formula of Viana et al. (2003), unstable
though they might be. Owing to the nonlinear nature of the Navier–Stokes equation
system, uniqueness of solutions is not guaranteed. It should not be surprising to find
multiple steady axisymmetric solutions for deformable bubbles at a given set of Re and
Ca, as demonstrated by Feng (2007). A thorough investigation of steady solutions
in the parameter space with linear stability analysis can be a quite involved task,
even though viable strategies have been illustrated (cf. Christodoulou 1989; Carvalho
1996). Therefore, investigation of the stability of computed steady axisymmetric
solutions, especially for highly deformed bubbles at large Re, is left open for future
research.
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